
1

Ohio Network Emulator (ONE) Enhancements

for Satellite Network Research
James McKim, Robert Dimond

Abstract|The ONE application is a network em-

ulator that can be run on an o� the shelf computer

workstation. ONE provides an inexpensive way to

perform the kinds of network emulation of interest

in space network research. E�ects that would be oth-

erwise diÆcult or impossible to simulate (i.e. com-

munication transit delays as seen by satellites and

spacecraft) can be studied in the lab as new proto-

cols are developed. ONE runs entirely in user space

and doesn't require any driver or kernel modi�ca-

tions.

ONE [1] was initially developed at Ohio University

and has since undergone major revision at NASA

Glenn Research Center Satellite Network and Archi-

tectures branch to enhance the capabilities of ONE

pertinent to the space based Internet protocol re-

search.

Of most interest is the variable propagation delay

capability. The software currently supports prop-

agation delays as de�ned by output from Satel-

lite Toolkit (STK) simulation runs. Interfaces to

other sources of propagation delay data can easily

be added as needed. Tests of the e�ects of chang-

ing propagation delays on the performance of net-

works can be done. This will facilitate development

of strategies to eÆciently and reliably handle net-

work environments like those encountered by space-

craft or satellites.

Other capabilities include: Random Early Detec-

tion (RED), an active queue management strategy

that attempts to improve performance and reduce

the average queue length, and Bit Error Rate (BER)

simulation (the injection of simulated noise into the

data stream). The design is amenable to inclusion of

other software controlled e�ects.

The ONE application is being made available to

outside researchers in a open source format. The

product will be supported internally, and ideally,

bene�t from having the wider external distribution.

I. Introduction

The Satellite and Networks Architecture Branch

at NASA Glenn Research Center has adapted the

ONE (Ohio Network Emulator) application to pro-

vide a useful platform on which to perform satellite

network research.

ONE emulates a link between a pair of network

interfaces. Various e�ects simulating those found

in the real world can be applied to traÆc owing

between the two interfaces. A report on an earlier

version of ONE was written [1]. Capabilities have

been enhanced since that report was issued.

Data networks that include satellite and space-

craft nodes impose e�ects on network traÆc not

experienced in terrestrial networks. The function

of ONE is to emulate networks, including those us-

ing satellites in order to provide an inexpensive way

to develop and test network protocols.

As an example: in networks that include satel-

lites, propagation delay can be signi�cantly longer

than is experienced in terrestrial networks. The in-

creased latency can have unexpected e�ects on traf-

�c through the network, utilization of the network,

and consequently, applications communicating via

the network.

One additional e�ect on traÆc associated with

many space based networks: at intervals and for

periods ranging upwards of several minutes to many

hours, di�ering orbits cause line of sight is obscured

and subsequent temporary loss of a link.

II. Design

ONE runs in user space. It requires no changes

to the kernel or device drivers.

At the core of the ONE application is a loop

within which packets are moved from input to out-

put queues. Incoming traÆc is monitored on each

interface and routed the the other interface's out-

put queue. Depending on the con�gured propa-

gation delay packets are timestamped as to when

they should be transmitted. Checks are also per-

formed as to whether or not a given packet should

be dropped or in some way otherwise a�ected.

A spin-wait on the system clock's value is done

to achieve the best available precision. On the de-

velopment hardware (SPARC Ultra 10) we achieved

about 0.5 ms. Care was taken to ensure the work

done within the loop is not computationally expen-

sive (time complexity O(1), and that work doesn't

vary signi�cantly over the course of a run.

ONE's operation reveals characteristics found in

both bridges and routers. ONE's operation resem-

bles a bridge as it looks for a match from an IP

packet's destination �eld in each ARP cache to de-

termine if that packet needs to be forwarded. ONE

does not care about the networks each interface re-

sides on as long a the it �nds this match.

ONE appears as a router in that it will not im-

plicitly forward packets between its interfaces, when

no matching ARP entry is found for the IP packet's

destination address.

Deploying ONE without the routers requires

some form of priming ONE's own ARP tables. This

might simply be initiating an ICMP ping from

equipment on each side to some address on the other

side.

Because of ONE's operational characteristics, we

deployed ONE in the In Space Internet Technol-

ogy's (ISINT) test bed between a pair of routers

as shown in �gure V. This con�guration allows re-

searchers to add equipment ad hoc, without worry-

ing about priming ONE's ARP caches, or adding

additional static ARP entries. Additionally, re-

searchers can more readily utilize ONE in network

architectures with asymmetric links, more closely

simulating some current methodologies for bulk

data transport.

III. Requirements

The platform requirements are: A SPARC run-

ning a recent version of Solaris. Development is be-

ing done under 5.7. ONE performs best if the host it

is running on is fairly fast. SuÆcient memory must

be present. Available physical memory will con-

strain queue sizes - causing the host to swap during

a run will invalidate any data gathered during that

run. A general guideline: to emulate 10BaseT or-

der of magnitude speeds, the platform should be an

Ultra-2 or faster.

The host must have at least two network inter-

faces, and preferably should have two dedicated in-

terfaces. The network segments attached to each

of the interfaces should be private and entirely al-

locatable to the emulation - otherwise unaccounted

for traÆc can a�ect the run

The host should be able to be dedicated to run-

ning ONE to the exclusion of all else during a run.

ONE is CPU intensive. More importantly, ONE

needs to have the best possible chance of transmit-

ting packets as close to the time it calculates they

must be transmitted as possible in order that the

emulation be faithful.

Equipment attached to each of the two interfaces

needs to be set up to generate traÆc according to

research needs. For example: the ISINT test bed

where ONE is developed includes a pool of machines

on a pair of segments attached to the two interfaces.

Applications are run to generate traÆc and moni-

tor network performance on the segments as ONE

emulates a link between the segments.

To assist in correlation of the data collected from

ONE and the traÆc generation and measurement

tools, we found it useful to precisely synchronize

the time on all the involved hosts prior to a run.

Some of the measurement tools require close time

synchronization. Network Time Protocol (NTP) [3]

is an expedient way to accomplish synchronization.

Available NTP software can accomplish useful syn-

chronization two ways: either by \jumping" the

time as the result of a single synchronization re-

quest, or by constantly adjusting the local clock.

Either method has side e�ects that can interfere

with getting good test results.

Managing other resources on the ONE host is im-

portant. The host should be dedicated to running

ONE, to eliminate invalid latency that would oth-

erwise be imposed on the traÆc passing through

ONE. Steps must be taken to ensure other running

processes won't interfere. Non essential processes

must be terminated. The critical resources are pro-

cessor cycles, physical memory, and network band-

width.

The current version of ONE doesn't take spe-

cial steps to ensure all required physical memory

is present and \allocated" to ONE (i.e. locking the

pages). This is because the application places it-

self on the real time scheduler queue: it's unlikely

it will be displaced by any competing process. It

is possible that a particular run con�guration could

cause ONE to request more memory than is phys-

ically available, in which case swapping will occur,

and subsequently, incorrect timings. An example

con�guration that would cause oversubscription is:

an emulation including a propagation delay of sev-

eral minutes at 10Mb/s on a host with only 100 MB

of physical memory. The page locking capability is

anticipated in a future release.

Other considerations apply when deciding how

to maintain good time synchronization. Network

based NTP is used. Depending on requirements

speci�c to a particular test, accuracy requirements

vary. Using ntpdate to \jump" system clocks on

all the involved hosts achieved accuracy below 1

msec. (worst case di�erence between the hosts),

but didn't do anything about drift. The commod-

ity PCs that were used for some of the generation

and monitoring tasks had fairly inaccurate clocks

- it wasn't unusual to see a drift of more than a

second over a period of a couple hours. Part way

through the development process, additional hard-

ware was acquired to provide auxiliary \control"

network interfaces. NTP peering software (ntpd)

was installed and enabled on all the hosts. As noted

in the ntpd documentation, a period of time is nec-

essary for the daemons to determine the drifts of

all the equipment. One caveat with using the con-

tinuously running daemon: attention must be given

to the resources it consumes. It communicates over

the network, so it should be con�gured to not uti-

lize any of the test interfaces. The NTP daemons

consumes minimal amounts of compute cycles and

memory, use of both these resources are insigni�-

cant on typical computer equipment.

Another timing issue is: how the Solaris sched-

uler can potentially a�ect the accuracy of timing

the transmission of packets from either of the out-

put queues. The ONE application uses a combina-

tion of sleeps 1 and spin-waits to achieve the best

possible accuracy. The spin-waits are necessary as

otherwise timing would only be as precise as the sys-

tem clock rate (rate at which the operating system

invokes the scheduler, 10 milliseconds. by default).

Increasing the default Solaris clock tick rate may

improve timing accuracy and reduce jitter. The de-

fault rate, as mentioned, is 100 Hz. This gives a

granularity of 10 ms. The Solaris clock tick rate

can be increased to 1000 Hz by adding the line:

set hires_tick = 1

to the /etc/system �le and rebooting. A caveat: we

found the system to be less stable with the increased

clock rate.

It's probably worth mentioning here that the 100

Hz system clock has no relation to the time obtained

when a system call to get the time (gettimeofday) is

invoked. That time comes directly from a hardware

clock that (on an SPARC Ultra 10) has a granu-

larity of 1 �s. (or less - the smallest amount that

can be returned by gettimeofday() is 1 �s). Your

mileage may vary under other architectures, and

this will have to be a consideration when adapting

ONE to other architectures.

Variable propagation delay con�guration is in

part done via a perl script. Perl must be present

on the host system if variable propagation delay is

to be used.

1
sleep in the Solaris/Unix operating system sense - causing the

operating system to place the ONE process on the sleep queue

and thereby allow other processes to run. If sleeps aren't done

occasionally, the ONE host would wedge, as ONE is running on

the real time queue and no \ordinary" processes (e.g. all the rest

of the processes) would have any chance to run]

The ONE tar �le can be unpacked anywhere con-

venient to the user. The directory it is unpacked to

should be added to $PATH. The executable (named

one must be run as e�ective UID root, as it must

access normally protected system resources (specif-

ically, it must be able to access network interfaces

promiscuously, and it needs to place itself on the

real time run queue). In order to access these re-

sources one of two events has to happen: the user

running the application must be logged in as root,

or the program itself must be installed setuid root.

The usual security caveats apply.

If variable propagation delay is to be used, the

one executable must be able to locate the one-

read-raw.pl script. Place the script somewhere in

a $PATH directory.

In order that ONE provide a faithful emulation

of a network, some requirements must be satis�ed.

Some of these are self evident. The host running

ONE must be fast enough to handle the desired

traÆc. We found a SPARC Ultra 10 is suÆcient

for speeds up to around 32 Mb/s. The host should

also have suÆcient memory to be capable of bu�er-

ing the worst case (longest) desired latency (at the

highest rate).

IV. Configuring and running ONE

A. Invocation

Prior to running ONE, a suitable con�guration of

the to-be-emulated network must be prepared. The

con�guration de�nition is placed in a �le, the name

of which is speci�ed when ONE is invoked.

ONE is invoked as:

one [-dn] con�g-�le

where -dn is an optionally supplied switch specify-

ing that debugging information be displayed during

a run. This option is synonymous with the verbose

option that can be speci�ed in the con�guration

�le (as described below). The con�g-�le parame-

ter, which must be supplied, is the name of the �le

describing the con�guration to be used for this run

B. Con�guration Syntax

Items in the con�guration �le are each speci�ed

on a separate line. The format is keyword: value

where keyword speci�es a con�guration item. Com-

ments may be placed in con�guration �les by start-

ing comment lines with #. The comprehensive list

of con�guration items is:

� interface: name

Specify the name of one of the pair of interfaces.

Two interfaces must be speci�ed, no more, no less.

The interface names must match the names of ex-

isting network interfaces on the emulation host (e.g.

hme1).

� linespeed: value traÆc-units | infinite

Specify an upper limit on the rate at which data

can ow out a given interface. There must be a

pair of these, one following each interface speci�-

cation. The parameter can be either an integer

number, representing the maximum speed in traÆc-

units per second, or the identi�er infinite, indi-

cating no upper limit exists for this interface. The

identi�er traÆc-units is described below.

Specifying this limit can a�ect the ow of data

through that interface, causing it to queue as the

interface becomes congested. The inherent ca-

pabilities of the interfaces still apply - emulating

100BaseT speeds via 10BaseT interfaces isn't likely

to yield useful results!

� memunit: value traÆc-units

The internal bu�er size (memory allocation granu-

larity) used to store packets in the queue.

� qsize: value traÆc-units

Specify the size of the output queue associated with

an interface. There must be a pair of these, one

for each interface. The parameters value, an inte-

ger, and traÆc-units specify the queue size to ONE.

ONE allocates an appropriate amount of memory.

No checks are done to ensure suÆcient physical

memory is available, so some attention to this detail

is necessary.

� red-threshold: minth maxth units-designator

Enable random early detection (RED). RED [2] is

an algorithm used to ensure fair access to network

bandwidth in situations where congestion is causing

packets to be dropped. If not enabled, ONE will

discard new traÆc if the queue the traÆc is bound

for is full.

When RED is enabled, a pair of parameters must

be supplied. The pair of numbers ranging from 0.0

to 1.0 represent queue fullness and can be thought

of as the points at which a zero and a 100 percent

chance that a random packet will be dropped from

the outbound queue for each incoming packet.

For example: red-threshold 0.75 0.95 b is in-

terpreted as: when this output queue is less than

75 percent full do not discard any packets. When

the queue increases above 75 percent, using a lin-

ear probability (zero percent chance at 75 percent

queue full to 100 percent chance at 95 percent queue

full) to determine if a packet should be dropped. If

a packet is to be dropped, pick one randomly from

the output queue.

The units-designator is p or b to indicate packets or

bytes respectively.

� ber: value

Specify a bit error rate (BER). If speci�ed, pseudo-

noise will be injected into the traÆc stream. The

con�guration item allows for a simple speci�cation

of noise which will cause random single bits to be

obscured at the speci�ed probability. The parame-

ter is a number representing the probability (0.0 to

1.0) that a given bit will be obscured by noise. This

item is speci�ed per interface.

� propagation: value [variable�le]

Specify the propagation delay that is to be applied

to a stream of traÆc before it can be transmitted

through the output interface. In the implementa-

tion, traÆc is queued on the output queue, but is

not transmitted until the speci�ed delay interval has

passed. Caveats about appropriate queue size vs.

having traÆc discarded apply. The parameter value

is a oating point number and represents delay time

in milliseconds. If the optional parameter variable is

speci�ed, the speci�ed �le is read to obtain the vari-

able propagation delay values. The variable propa-

gation delay values are added the �xed value. Vari-

able propagation delay is useful in instances like

con�gurations of satellites in a network, where prop-

agation delay is not �xed. If variable propagation

needs to be speci�ed, the input format is described

below.

� verbose: level

Enable verbose status reporting. Additional infor-

mation is displayed and logged if verbose is enabled.

The parameter level can range from one to ten,

with higher levels resulting in increasing amounts

of logged information. A caveat: logging large

amounts of information may adversely a�ect the

veracity of a run, as the act of logging consumes

resources. Actions are:

0 - dump counters

1 - dump cache, interface information, Ethernet

cache

2 - dump print queue

3 - dump qfull

4 - dump printdrops

5 - dump qfull2

8 - dump delays

� drawplots

� logfile: name

Specify the name of the �le to which the logs will

be written. The �le is overwritten each run, so if

the information within the �le is to be saved, it will

have to be copied elsewhere.

� lockfile: name

Specify the name of the lock �le - a �le used to help

ensure ONE cannot be run more than once simulta-

neously on a given host. On occasion, if ONE isn't

terminated gracefully, the lock �le might have to be

manually removed.

� pidfile: name

ONE writes its PID in this �le while running.

� delayfile: name

Specify the name of the �le to which the delay re-

sults are to be written. Note that the verbose level

must also be set to eight or greater for this to hap-

pen.

� drop

Currently, this item has no e�ect.

The parameter traÆc-units is an identi�er com-

prised of one of the following optional characters:

K - 1024 (210)

k - 1000

M - 1048576 (220)

m - 1000000

followed by one of:

B - bytes/octets

b - bits

V. Using ONE

ONE is set up on a computer with a couple of

interfaces (ideally three interfaces, the third to pro-

vide a route for traÆc not intended for the network

emulation.

If the varying propagation capability is to be

used, it's best to synchronize ONE's operation with

that of the traÆc generators (and the measurement

instruments). It's fairly straightforward to do this

with a script. ONE, when operating in this mode,

will wait until it �rst sees traÆc before starting the

propagation model (in other words, time t0 is the

time of the �rst traÆc seen).

An example con�guration �le:

Satellite Emulation

An example configuration for a

host that has two dedicated

interfaces, le0 and le1. The

verbosity of diagnostics is set to a

relatively quiet level (one);

only counters, cache, interface

information, and the Ethernet

cache will be dumped.

#

propagation: ms

the propagation delay in milliseconds

qsize unit: size of the outgoing packet queue

can use units below, no units=bytes

linespeed unit: variable

can use units below, no units=bytes/second

a linespeed of "infinite" means go as

fast as possible

memunit: memory allocation size for buffering

packets, same units as linespeed (1K means

alloc packets in 1K allocation units)

verbose: number for 0 to 10, 0 is quiet, 10 is noisy

values that take args in bits/bytes can use the

following units: K=1024, k=1000, b=bits, B=bytes,

M=1024*1024, m=1000*1000, s=ignored so

1 Kbs = 1024 bits/second, and 1 kBs=1000 bytes/second

verbose: 1

logfile: /tmp/bridge.log

pidfile: /tmp/bridge.pid

delayfile: /tmp/bridge.delay

memunit: 1024 B

drawplots: 0

front side

The maximum rate at which data

can exit this interface is set to

768000 bits per second or 96000

bytes per second. The queue size is

limited to 85 KB (87040 bytes).

Propagation delay is set to 50

milliseconds; traffic entering this

interface will be delayed at

least 50 milliseconds before

exiting the other interface. Random

Early Detection is enabled and is

set to start discarding random

packets when the transmit queue is

70 percent full and to discard on

a one for one basis if the queue

reaches 95 percent full.

interface: le0

linespeed: 768000 bs

qsize: 85 KB

propagation: 50

drop: no_drop

red-threshold: 70 95 p

back side

Configured pretty much symmetrically,

with the exception RED is not

enabled. If the queue becomes full,

new packets will be dropped.

interface: le1

linespeed: 768000 bs

qsize: 85 KB

propagation: 50

drop: no_drop

A variety of example con�gurations can be found

in the con�g directory.

The variable propagation delay input �le format

is, for expediency, that of the output from the Satel-

lite Tool Kit application (STK). The format is a se-

ries of records, one per line. Fields within a given

record are separated by whitespace.
An example from a variable propagation delay

�le:

1 Mar 1999 00:26:14.00 228.443 -81.139 44708.216092

1 Mar 1999 00:27:14.00 226.128 -80.972 44413.993235

1 Mar 1999 00:28:14.00 223.845 -80.819 44113.620746

1 Mar 1999 00:29:14.00 221.587 -80.682 43808.004479

...

The �rst four �elds represent the date, and the

last (seventh) �eld represents the distance between

the satellite and the observer in kilometers. The

other two �elds are not used by ONE.

Runs using variable propagation delay are based

on the start time of the run being treated as the

start time of the delay data in the propagation �le.

Thus, for example, using the above data, the de-

lays imposed on traÆc by ONE one minute into a

run would be based on the second record, and so

on. When ONE reaches the end of the variable de-

lay propagation table the run is terminated. No

interpolation is done of delays between data points

supplied in the table.

The propagation delay information is stored as

a table internally. Each entry consumes around 12

bytes. Choice of an appropriate interval between

time data points is a trade o� between maximum

acceptable jumps in the delay value, and the size

of the table (speci�cally, how the size impacts the

amount of available memory). Table size has no

signi�cant e�ect on compute resources

Zones of exclusion (ZOEs) are determined based

on large discontinuities in the time column of the

delay table, that is, when there is a step in the time

of greater than one minute. During the time covered

by a ZOE occurrence, no traÆc is forwarded.

Example: measuring jitter between two hosts

through ONE.

In this example, ICMP pings are used at a rela-

tively low bandwidth utilization (so link saturation

is not an issue) as a simple test to verify the test

traÆc throughput is as expected, and not being ad-

versely a�ected by some part of the test apparatus.

The hosts participating in the test are terrestrial2

and space2. Host terrestrial2 pings host space2 and

measures the response times.

Th script:

#! /usr/local/bin/perl

use strict;

my $interval = 0.2;

my $size = 64;

my $count = 100;

my $shost = "terrestrial2";

my $dhost = "space2";

my $rtmp = "/tmp/ping.$$";

close STDIN;

my $ocmd = "ssh root\@$shost-ext \

'ping -i $interval -s $size -c $count $dhost > $rtmp; \

cat $rtmp'";

print STDERR "$ocmd\n";

open(STDIN, "$ocmd |") || do {

die "open, $!";

};

my $n_rtt = "/tmp/plot-$$-rtt.ps";

open(RTT,

"| graph -T ps \

-L 'RTT, $shost to $dhost, $size B, $interval S' \

-X 'Count (time)' -Y 'Propagation Delay (msec)' \

> $n_rtt");

my $n_drtt = "/tmp/plot-$$-drtt.ps";

open(DRTT,

"| graph -T ps \

-L 'd(RTT), $shost to $dhost, $size B, $interval S' \

-X 'Count (time)' -Y '(msec)' > $n_drtt");

my $prev_seq = -1;

my $ortime;

while (<STDIN>) {

chomp;

if (/icmp_seq=(d+) .+ time=([d.]+) /) {

my $icmp_seq = $1;

my $rtime = $2;

while ($icmp_seq != $prev_seq + 1) {

my $mtime = $interval * $prev_seq;

print "missing at time $mtime\n";

$prev_seq++;

}

my $time = $interval * $icmp_seq;

print RTT "$time $rtime\n";

if ($icmp_seq > 1) {

printf(DRTT "%g %g\n", $time, $rtime - $ortime);

}

$prev_seq = $icmp_seq;

$ortime = $rtime;

}

else {

print STDERR "warning: ignoring '$_'\n";

}

}

close RTT;

close DRTT;

if ($prev_seq == -1) {

die "no data";

}

system("gv $n_rtt &");

system("gv $n_drtt &");

VI. Future Plans

Other algorithms for queuing strategies will be

incorporated into ONE. Something that attempts

to restrict use of a link by non rate limiting traÆc

(UDP, for instance) would be useful.

The ONE application was developed in a So-

laris/SPARC environment. Near term plans in-

clude porting it to a Solaris/X86 environment

(which shouldn't be much more than a recompile).

Software development tools include the ubiquitous

GNU C compiler. There is some reliance on low

level Solaris facilities that will make it a bit more

challenging to make a platform independent ver-

sion, but that is a longer term goal.

Running on less expensive commodity hardware

does have some caveats. Depending on the qual-

ity of both the hardware and the software (device

drivers and such), performance can vary widely. In-

expensive PCI based Ethernet interfaces can have

poor to excellent performance, depending on the

production run (i.e. even identical model numbers

from the same manufacturer). When running on

\commodity" hardware, it is important to quantify

the performance of the underlying hardware and

software before relying on ONE to produce correct

emulation.

VII. Availability

ONE lives at http://irg.cs.ohiou.edu/one/.

Source code, documentation and other information

related to ONE can be found at this address.

A mail list has been established to facilitate

communication among ONE users. Send email to

majordomo@grc.nasa.gov. In the text body include

the line:

subscribe one-users

to subscribe to the list.

References

[1] Mark Allman, Adam Caldwell, Shawn Osterman ONE: The

Ohio Network Emulator Ohio University, 1997.

[2] Sally Floyd, Van Jacobson Random Early Detection Gate-

ways for Congestion Avoidance IEEE/ACM Transactions on

Networking, 1993.

[3] ntpd, ntpdate http://www.eecis.udel.edu/~ntp/

